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The authors aimed to investigate the dynamic proprieties of one-dimensional system of Brownian particle immersed in 
bistable and metastable periodic potential, in other words in periodic potentials with two wells. The calculations are 
developed by using the Fokker-Planck equation which is solved numerically by the continued fraction expansion method 
(CFEM), in order to calculate the frequency-dependent conductivity.  Our numerical results are given for various forms of 
the periodic potential and for different temperatures T. As expected, we found that the dynamical properties are very 
sensitive to the structure of the periodic potential.  Moreover, our calculations show that the diffusive regime of particles in 
bistable periodic is slightly more important than the one calculated in metastable or in cosine forms. All calculations 
presented here are performed in the overdamped regime. 
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1. Introduction 
 
The one-dimensionnal diffusion of a Brownian 

particles in periodic medium represents a model that can 
be applied in numerous contexts, for it has possible 
applications in condensed matter physics, chemical-
physics and molecular biology [1-4]. In the simplest 
Langevin equation, the particle is coupled to the 
environment by the viscous damping coefficient γ  (which 
models the energy exchange with the substrate) and by a 
white noise, which are related to each other by the 
fluctuation-dissipation theorem [5]. These descriptions do 
not introduce an artificial distinction between local motion 
(oscillations) and diffusive motion. They thus allow a 
unified description of both essential dynamical features of 
the motion of the mobile particles. The determination of 
the dynamic properties of the system for arbitrary 
temperature and periodic potential remained a challenging 
task for decades, even at the over-damped limit.  In the 
specifically case of a cosine potential, which is an 
oversimplification, the problem has been studied mainly 
from the point of view of the calculation of diffusion 
coefficient D and of some correlation functions, such as 
the velocity-velocity correlation spectrum, and  the mean-
square displacement [6,7]. These investigations are well 
understood, but there is only limited information for 
dynamic properties in effective potentials. However, in 

order to describe various systems in condensed matter 
physics and biology, more complicated potentials than the 
simple sawtooth type potential may be required. The 
present contribution continues our study [8,9] of Brownian 
motion in periodic potentials, considering the case when 
there are two potential barriers per period such as 
metastable and bistable potentials. The role of these 
potentials in the diffusion motion was pointed out in Refs 
[10,11] in the context of superionic conductors. The 
molecular-dynamics simulation of self-diffusion on metal 
surfaces [12] and experimental data for superionic 
conductors [13] provide the evidence that the potential 
barriers of different heights are important for the 
understanding of transport processes in corresponding 
systems. As mentioned in the beginning, our calculations 
are performed in the case of one dimensional system by 
solving the Fokker Planck equation using the continued 
fraction expansion method. The attention will be focused 
on the frequency-dependent conductivity, which provides 
important information about dynamic properties of 
diffusion process. Indeed, by varying the ratio ξ  = V2/V1 
(where  V2  and  V1  are  the  barriers  of  the  potential) 
strictly between 0 and 1, we demonstrate the influence of 
the periodic potential structures on the behavior of 
Brownian particles in metastable and bistable potential. It 
is worthwhile to point out that the information on the 
dynamic phenomena is very useful for the applications 
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 The present paper is organized as follows. In the 
second section the model is defined and the basic Fokker-
Planck equation is set up. This equation is solved using the 
continued fraction expansion method. Numerical solutions 
for the frequency dependent conductivity are presented in 
the third section. Results can be obtained for large friction 
constants as well as for different periodic potential shapes. 
The concluding results will be given in the last section.  

 
 
2. Theoretical model and method of  
    calculation 
 
The physical quantity which characterizes the 

dynamics of the diffusing particles can be expressed in 
terms of correlation functions. As mentioned in the 
introduction we will be interested to the frequency-
dependent conductivity ( )ωσ  which is given by the 
Fourier transform of the velocity-velocity correlation 
function 
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Where L is the chain length and Q is the particle’s charge 
of system. The low frequency limit of the quantity ( )ωσ  
is proportional to the diffusion coefficient D:  
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The correlation function can be calculated with the 

help of the transition probability density ),/,,( '' vxtvxf  
in the phase space ሺx,vሻ  of all mobile particles. This 
function determines the probability that a particle initially 
prepared at positions x’ and velocity v’ will be found at x 
and v after time t. It is determined by the Fokker-Plank 
equation (FPE): 
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With the Fokker –Planck operator expressed as: 
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Where m, γ and T are the masse, the friction coefficient 
and the temperature of the thermal bath, respectively. The 

quantity ( )
x
Vxk

∂
∂

−=  is the force acting on the particle 

derived from the potential V(x), which is of a particular 
interest in this work. We shall come back to this potential 
in some of our considerations in section III.   

Several methods for solving Fokker-Plank equation have 
been used, such as simulation method and eigen-function 
expansion [1]. In this work we use the continued fraction  
expansion method (CFEM) introduced by Zwanzing and 
Mori to solve such evolution equation [14]. The dynamical 
conductivity can be formally represented by a continued 
fraction [15]:    
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where
TkB

1
=β  and pa  , pb  are static correlation 

functions. The remainder ( )ωpR  is a memory function 
which must be calculated approximately.  

According to the algorithm technique developed by 
Zwanzig-Mori [12], the first few coefficients of the 
conductivity are given by:  
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Where k’(x) is the derivative of the force k(x). The 
coefficients pb  are damping terms, which vanish in the 

Hamiltonian case ( )0=γ   
 

γ=1b    ;  02 =b   ;  γ=3b    ; ….           (9) 
 

In order to calculate the dynamical conductivity by 
applying CFEM, one has to answer two principal 
questions. The first consists of finding a suitable 
approximation of the remainder of the infinite continued 
fraction. In the large friction limit, it is obtained by 

γ=pR . The second problem appears in the evaluation of 
the static correlation functions.   
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3. Results and discussion 
 
Considering a form of the potential V(x) by taking the 

first two terms of the Fourier expansion of the periodic 
potential, then we can write 
 

( ) ( ) ( )    .2cos cos 00 xqBxqAxV +=        (10) 
 

As mentioned above, our study was performed by 
using the potential given in Eq. (10) for various values of ξ 
which is defined as the ratio of the two different barriers of 
the potential. The choice of the parameters A and B 
determine the desired values of the ration ξ and the shape 
of the periodic accorded to their sign. In fact, the bistable 
potential can be obtained when both constants A and B are 
positives while the metastable potential when they are 
negatives.  Figs. 1 and 2 depict the shape of this potential 
in the case of bistable and metastable structure, 
respectively. We note that for varying the parameter ξ  = 
V2/V1, we vary only the height of the barrier V2 inside de 
cell , the other barrier V1 outside the cell  is chosen to be 
constant and equal to 0.1eV (see Figs. 1 and 2).  
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Fig. 1. Structure of the symmetric bistable potential V(x) for 

different values of the ratio of two potential barriers ξ. 
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Fig. 2. Structure of the symmetric metastable potential  

V(x) for different values of the parameter ξ. 

As mentioned above, the continued fraction method 
expansion is a powerful method to study dynamic 
properties for wide range of parameters of system. The 
principal problems arise only at extremely low friction. In 
this limit, the computational efforts are different: higher 
order continued fractions are necessary and no analytical 
solutions are then available.  But, in many cases, at high 
temperatures or in high and intermediate friction regimes a 
few poles are sufficient to describe qualitatively the 
dynamic proprieties. In our case, a continued fraction 
expansion up to order 3  is used: 
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 Within our model potential given by Eq.(10), the static 
correlation functions which soon become very lengthy are 
expressed as: 
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The ensemble averaging (<…>) is calculated from the 
equilibrium distribution of Boltzmann by use the 
continued fraction expansion method. Then, we can easily 
calculate the dynamic conductivity ( )ωσ  as function of 
oscillation frequency ω.  

 
 
A. Bistable model   
 
In the following, we present and discuss qualitatively 

the motion of particles in the regime of large friction, i.e., 
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characteristic frequency for vibration at the bottom of the 
well when the parameter ξ goes to zero (ξ=0). 

Fig. 3 shows the variation of dynamic conductivity as 
a function of the frequency for different values of ξ in the 
limit of high friction limit. For extreme values of ξ (ξ=0, 
ξ=1) the specter of ( )ωσ  dominated by an oscillator peak 

situated at frequency around 0ω  and 02ω , respectively. 
In this situation, the particle spends the most part of the 
time by making small-amplitudes oscillations around the 
well bottoms, and sometimes is activated and makes a 
jump from a well to another.   
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Fig. 3. Dependence of dynamic conductivity ( )ωσ  with 
the   frequency ω   for  different  values  of ξ.  The  other  
               parameters are Γ =7, T=300 K, V1=0.1eV. 

 
 

For the other values of ξ, the behavior of the 
conductivity ( )ωσ  behaves differently, as is visible from 
the figure. Indeed, when the parameter ξ decreases the 
oscillatory peak decreases and the central peak (ω =0) 
increases strongly in intensity. This finding, suggests then 
that for low values of ξ, the particle motion is mainly of 
diffusive motion.  
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Fig. 4. Dependence of dynamic conductivity ( )ωσ  with 
the  frequency ω  for  different  values   of   T   the  other  
                       parameters are Γ=7 and ξ=0.5. 

 
 

This transition from the oscillatory to the diffusive 
regime in our model potential can be also achieved, as the 
temperature increases (see Fig. 4). In fact, for a fixed value 

of ξ (ξ =0.5 for example) and at T=200 K, a strong 
oscillatory peak appears approximately at the frequency 

07.1 ωω = . At intermediate temperature T=300 K, this 
peak moves slightly to lower frequencies and decreases in 
intensity. At T=400 K, the central peak increases and the 
oscillatory continues to decrease in intensity, reflecting the 
important diffusive motion of the particles over the 
potential barriers.  Furthermore, if the temperature is high 
compared to the barrier height ( 1VTkB >> ), the dynamic 
response of the Brownian particle becomes that of a freely 
diffusing particle.  

 
B.   Metastable model 
 
In this subsection, as for the previous one, we 

illustrate the behavior of the dynamic conductivity of our 
Brownian particles immersed in metastable potential in the 
limit of high friction.  The results for ( )ωσ  obtained from 
the continued fraction expansion method are shown in Fig. 
5, for different values of ξ. 
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Fig. 5. Dependence of dynamic conductivity ( )ωσ  with 
the  frequency  ω   for  different  values  of  ξ. The  other  
                parameters are Γ=7, T=300 K, V1 =0.1eV. 

 
 

As expected, for the extreme values of ξ, we obtain 
the same behavior of the conductivity as for bistable 
potential. Because, for these two values of ξ, both 
structures (bistable and metastable) coincide, justifying 
then the same spectrum obtained for the conductivity.  For 
the other values of ξ, we observe that contrary to bistable 
potential, the increasing of the ξ has the effect of 
increasing slightly the central peak. On the other hand, the 
spectrum of the conductivity remains dominated by the 
oscillatory peak, reflecting the importance of the 
oscillatory regime in metastable structure.  
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Fig. 6. Dependence of dynamic conductivity ( )ωσ  with 
the  frequency ω  for  different  values  of  T.   The  other  
             parameters are Γ=7, ξ=0.5  and, V1 =0.1eV. 

 
 

However, the transition from the oscillatory to the 
diffusive regime is clearly seen, as the temperature 
increases (see Fig. 6).  

Finally, in order to make a quantitative comparison 
we have plotted in one figure as is seen in Fig. 7 the 
conductivity versus the frequency for the three forms of 
periodic potential: bistable, metastable and cosine 
potential. The analytical expression of cosine potential 
used here, is given by: 

)).cos(1(
2

  (x)   1 xq
V

V o−=                (14) 

The analysis of this figure shows that the conductivity 
at zero frequency is more important for bistable potential 
than the one calculated for metastable and for a usual 
cosine potentials. Whereas for high frequency, the 
situation is different and opposite: the big intensity of the 
oscillatory peak is found for cosine potential and the low 
intensity is found for the bistable potential.   
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Fig. 7. Dependence of dynamic conductivity ( )ωσ  with 
the frequencyω  for the three forms of periodic potential  
           the parameters are Γ=7, T=200 K and ξ=0.5. 

4. Conclusions 
 
The intention of this work was to study the dynamic 

proprieties of one-dimensional system of Brownian 
particles subject to symmetric bistable and metastable 
potential, being obviously more realistic and flexible for 
possible applications in condensed matter physics and 
biology.  

While such systems have been of interest for several 
decades, our interest is motivated by the fact that, we have 
not found much work in the literature on dynamic 
proprieties in these potential shapes. For this purpose, we 
have focused our attention mainly on the frequency-
dependent conductivity ( )ωσ . The calculations of ( )ωσ  
are developed for a wide range of frequency by using the 
Fokker-Planck equation which is solved numerically by 
the continued fraction expansion method (CFEM) 
truncated at the four order. By varying the ratio of the 
barriers ξ  =  V2/V1 strictly between 0 and 1, we 
demonstrate the influence of the periodic potential 
structures on the behavior of Brownian particles in 
metastable and bistable potential. Our calculations show 
that the diffusion regime in bistable periodic potential is 
slightly more important than the one calculated in 
metastable or in cosine form.  
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